Partial Fractions 2

1. Worked Examples

Example

Express $\frac{5 x-4}{x^{2}-x-2}$ as the sum of its partial fractions.

Solution

First we factorise the denominator: $x^{2}-x-2=(x+1)(x-2)$. Next, examine the form of the factors. The factor $(x+1)$ is a linear factor and produces a partial fraction of the form $\frac{A}{x+1}$. The factor $(x-2)$ is also a linear factor, and produces a partial fraction of the form $\frac{B}{x-2}$. Hence

$$
\begin{equation*}
\frac{5 x-4}{x^{2}-x-2}=\frac{5 x-4}{(x+1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-2} \tag{1}
\end{equation*}
$$

where A and B are constants which must be found. Finally we find the constants. Writing the right-hand side using a common denominator we have

$$
\frac{5 x-4}{(x+1)(x-2)}=\frac{A(x-2)+B(x+1)}{(x+1)(x-2)}
$$

The denominators on both sides are the same, and so the numerators on both sides must be the same too. Thus

$$
\begin{equation*}
5 x-4=A(x-2)+B(x+1) \tag{2}
\end{equation*}
$$

We shall first demonstrate how to find A and B by substituting specific values for x. By appropriate choice of the value for x, the right-hand side of Equation 2 can be simplified. For example, letting $x=2$ we find $6=A(0)+B(3)$, so that $6=3 B$, that is $B=2$. Then by letting $x=-1$ in Equation 2 we find $-9=A(-3)+B(0)$, from which $-3 A=-9$, so that $A=3$. Substituting these values for A and B into Equation 1 gives

$$
\frac{5 x-4}{x^{2}-x-2}=\frac{3}{x+1}+\frac{2}{x-2}
$$

The constants can also be found by equating coefficients. From Equation 2 we have

$$
\begin{aligned}
5 x-4 & =A(x-2)+B(x+1) \\
& =A x-2 A+B x+B \\
& =(A+B) x+B-2 A
\end{aligned}
$$

Comparing the coefficients of x on the left- and right-hand sides gives $5=A+B$. Comparing the constant terms gives $-4=B-2 A$. These simultaneous equations in A and B can be solved to find $A=3$ and $B=2$ as before. Often a combination of the two methods is needed.

Example

Express $\frac{2 x^{2}+3}{(x+2)(x+1)^{2}}$ in partial fractions.

Solution

The denominator is already factorised. Note that there is a linear factor $(x+2)$ and a repeated linear factor $(x+1)^{2}$. So we can write

$$
\begin{equation*}
\frac{2 x^{2}+3}{(x+2)(x+1)^{2}}=\frac{A}{x+2}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} \tag{3}
\end{equation*}
$$

The right hand side is now written over a common denominator to give

$$
\frac{2 x^{2}+3}{(x+2)(x+1)^{2}}=\frac{A(x+1)^{2}+B(x+2)(x+1)+C(x+2)}{(x+2)(x+1)^{2}}
$$

Therefore

$$
\begin{equation*}
2 x^{2}+3=A(x+1)^{2}+B(x+2)(x+1)+C(x+2) \tag{4}
\end{equation*}
$$

A and C can be found by substituting values for x which simplify the right-hand side. For example if $x=-1$ we find $2(-1)^{2}+3=A(0)+B(0)+C$ from which $C=5$. Similarly if we choose $x=-2$ we find $8+3=A(-1)^{2}+B(0)+C(0)$ so that $A=11$. To find B we shall use the method of equating coefficients, although we could equally have substituted any other value for x. To equate coefficients we remove the brackets on the right-hand side of Equation 4. After collecting like terms we find that Equation 4 can be written

$$
2 x^{2}+3=(A+B) x^{2}+(2 A+3 B+C) x+(A+2 B+2 C)
$$

By comparing the coefficients of x^{2} on both sides we see that $(A+B)$ must equal 2. Since we already know $A=11$, this means $B=-9$. Finally substituting our values of A, B and C into Equation 3 we have $\frac{2 x^{2}+3}{(x+2)(x+1)^{2}}=\frac{11}{x+2}-\frac{9}{x+1}+\frac{5}{(x+1)^{2}}$.

Exercises

1. Show that $\frac{x-1}{6 x^{2}+5 x+1}=\frac{3}{2 x+1}-\frac{4}{3 x+1}$. 2. Show that $\frac{s+4}{s^{2}+s}=\frac{4}{s}-\frac{3}{s+1}$.
2. The fraction $\frac{5 x^{2}+4 x+11}{\left(x^{2}+x+4\right)(x+1)}$ has a quadratic factor in the denominator which cannot be factorised. Thus the required form of the partial fractions is

$$
\frac{5 x^{2}+4 x+11}{\left(x^{2}+x+4\right)(x+1)}=\frac{A x+B}{x^{2}+x+4}+\frac{C}{x+1}
$$

Show that $\frac{5 x^{2}+4 x+11}{\left(x^{2}+x+4\right)(x+1)}=\frac{2 x-1}{x^{2}+x+4}+\frac{3}{x+1}$.

